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Abstract

The effect of the choice of the reference fluid temperature on the solutions of fully-developed mixed-convection
problems in a plane vertical channel is studied. First, the boundary conditions of either uniform wall temperatures
or a uniform temperature at a wall and a uniform heat flux on the opposite wall are considered. It is shown that, in
these cases, the choice of the reference temperature affects both the velocity profiles and the axial change of the
difference between the pressure and the hydrostatic pressure. A general method to choose the reference fluid
temperature for the fully developed mixed convection in ducts is proposed. Finally, an analytical solution for the
boundary condition of uniform wall heat fluxes is obtained by choosing the mean fluid temperature in each cross
section as the local reference temperature. © 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Several studies on mixed-convection problems for a
Newtonian fluid in a vertical channel have already
been presented in the literature. In particular, some
analytical solutions for the fully-developed flow have
been performed. The boundary condition of uniform
but different wall temperatures has been analysed by
Aung and Worku [1]. The boundary conditions of uni-
form wall temperatures, of a uniform temperature on a
wall and a uniform wall heat flux on the opposite wall,
of uniform wall heat fluxes, have been studied by

* Corresponding author. Tel.: +39-051-6443295; fax: +39-
051-6443296..
E-mail address: antonio.barletta@mail.ing.unibo.it (A.
Barletta)

Hamadah and Wirtz [2] and by Cheng et al. [3]. The
effect of viscous dissipation on the velocity and on the
temperature profiles has been analysed by Barletta [4]
for the boundary condition of uniform wall tempera-
tures and by Zanchini [5] for boundary conditions of
the third kind.

In this paper, the basic problems solved in Refs. [1—
3] are reconsidered because, even if the mathematics
developed in these papers is correct, the physical
understanding of the problem cannot yet be considered
as satisfactory. Moreover, the case of uniform wall
heat fluxes with opposite signs has not yet been ana-
lysed. The defects in the physical interpretation are
caused by the following circumstance. In Refs. [1-3],
as well as in other theoretical papers on mixed convec-
tion, the reference temperature 7, employed in the lin-
ear expression of the fluid density p as a function of
temperature, is left undetermined. On the other hand,
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Nomenclature

a; dimensionless coefficients, which appear in Eq. (61), i=1, 2, 3, 4
A, B dimensionless integration constants, defined by Eq. (20)

Cp specific heat at constant pressure [J kg™' K™']

F function of Ty, defined by Eq. (34) [K* m]

g acceleration due to gravity [m s 2]

Gr Grashof number, defined in Egs. (10) and (36)

k thermal conductivity [W m~' K~']

L half the channel width [m]

Nuy, Nu, Nusselt numbers at the channel walls, defined by Eq. (71)

p pressure [Pa]

P =p+ pogX, difference between the pressure and the hydrostatic pressure [Pa]
q1, 9> wall heat fluxes per unit area [W m ]

R =(1/¢,, dimensionless parameter

Re Reynolds number, defined in Eq. (10)

T temperature [K]

Ty bulk temperature, defined by Eq. (72) [K]

Tm mean fluid temperature, defined by Eqs. (8) and (38) [K]

To reference fluid temperature [K]

T, T, wall temperatures [K]

u = U/Uy, dimensionless X-component of the velocity

U X-component of the velocity [m s™']

Un mean value of U, defined by Eq. (9) [m s™']

U velocity [m s™']

v dimensionless X-component of the velocity, defined by Eq. (25)
X axial coordinate [m]

y = Y/L, dimensionless transverse coordinate

Y transverse coordinate [m]

Greek symbols

TE >N DI 02

e3>

g

thermal expansion coefficient [K ']

dimensionless parameter, defined in Egs. (10) and (36)
dimensionless parameter, defined in Eq. (10)

auxiliary dimensionless variable, which appears in Eq. (59)
dimensionless temperature, defined in Eqgs. (10) and (36)
dimensionless bulk temperature, defined by Eq. (74)
dimensionless parameter, defined in Eq. (10)
dimensionless parameter, defined by Eq. (30)
dimensionless parameter, defined by Eq. (24)

dynamic viscosity [Pa s]

fluid density [kg m ]

fluid density at temperature T\, [kg m ]

reference fluid density [kg m ™

dimensionless parameter, defined by Eq. (60)

values of w, roots of Eq. (65), i=0, 1, 2, 3, 4

an analysis of Refs. [1-3] suggests that the choice of
T, may be important.

For instance, let us consider the boundary condition
of uniform wall temperatures, hereafter denoted by T}
<> T,. For this boundary condition, profiles of the
dimensionless axial velocity u= U/U,,, where U is the
axial fluid velocity and U, is the mean value of U in

any cross section of the channel, are plotted in Refs.
[1-3]. The plots represent u as a function of the dimen-
sionless transverse coordinate and of two dimensionless
parameters, each of which depends on 7,. Thus, it is
natural to wonder whether the values of u obtained
depend on the choice of the reference temperature 7y
In this paper, it will be proved that, even if slightly,
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these values depend on 7,. A more crucial problem
concerns the values of the derivative dP/dX, where P
is the difference between the pressure p and the hydro-
static pressure, and X is the axial coordinate. No result
for this quantity is presented in Ref. [2]. According to
the expressions reported in Refs. [1,3], which agree
with each other and are confirmed by that obtained in
this paper, the dependence of dP/dX on T, is very
strong. As a consequence, dP/dX cannot be endowed
with a clear physical meaning, unless a proper choice
of Ty is performed.

The comments on the choice of T stated above
hold also for the boundary condition of a uniform
wall temperature and a uniform wall heat flux, here-
after denoted by T < ¢». Indeed, as it will be shown
in Section 3, this boundary condition yields uniform
wall temperatures and thus describes the same physical
situation as the boundary condition 77 < T,. For the
boundary condition of uniform wall heat fluxes, here-
after denoted by ¢; < ¢», the choice of the reference
fluid temperature plays an even more crucial role. As it
will be shown in Section 4, in this case any choice of a
fixed reference fluid temperature, Ty, implies a quite
unlikely pressure field.

Arpaci and Larsen [6] consider T as an unknown
quantity, and propose the following method to deter-
mine T, for one-dimensional parallel flows. The fluid
motion is considered as the superposition of a forced
flow, in which buoyancy forces vanish, and a buoy-
ancy-driven flow, in which dP/dX vanishes. The sol-
ution of the buoyancy-driven problem, with the
condition dP/dX=0, yields the value of T7,. The
method can be applied only if the mass, momentum
and energy balance equations are linear. For fully-
developed channel flows, this condition holds if the vis-
cous-dissipation effects are negligible and the boundary
condition is either 7; <> T, or T} < ¢,. In these cases,
the method proposed in Ref. [6] yields the result
To=(T,+ T,)/2. Moreover, T, coincides with the mean
fluid temperature T,,, because T is independent of X
and is a linear function of the transverse coordinate.
As it will be shown in Section 4, if the boundary con-
dition is g <> ¢> the method proposed by Arpaci and
Larsen [6] cannot be applied, because the energy bal-
ance equation is not linear. A method to perform a
suitable choice of the reference fluid temperature, for
any fully developed channel flow, is proposed in this
paper. For the boundary condition 7} < 7> (or T} <>
¢») and negligible viscous-dissipation effects, this
method agrees with that proposed in Ref. [6].

The paper is organized as follows. In Section 2, the
boundary condition 7} < ¢, is considered and the
effects of the choice of T on u and on dP/dX are ana-
lysed. In particular, it is shown that the choice of the
mean fluid temperature T, as the reference tempera-
ture yields values of dP/dX which are unaffected by

the buoyancy forces. On the other hand, the choices Ty
# Ty, imply that, in some flow conditions, P increases
along the motion. These results suggest that only the
choice To=T,, gives to dP/dX an acceptable physical
meaning. Finally, a more general argument in favour
of the choice Ty=T,, is discussed. In Section 3, it is
shown that the solution obtained, in dimensionless
form, for the boundary condition T < ¢, holds also
for the boundary condition T} < T, with proper defi-
nitions of the dimensionless parameters. In Section 4,
the boundary condition ¢; <> ¢, is considered. First, it
is shown that a reference fluid temperature variable
with X must be chosen to obtain a reliable pressure
field, and the choice Ty(X)=Tn(X) is performed.
Then, an analytical solution of the fully-developed
mixed-convection problem in a vertical channel with
the boundary condition ¢; < ¢5 is presented. This sol-
ution holds both for positive and for negative values
of the ratio R=¢q;/q,, and includes the solution for the
boundary conditions T} < ¢, and T < T, as a special
case, for R=—1.

2. Mixed convection problem with the boundary
condition T, < ¢,: effect of the choice of the reference
temperature

In this section, the effect of the choice of the refer-
ence temperature on the solution of the fully-developed
mixed-convection problem in a vertical channel with
the boundary condition T} < ¢, is analysed.

Let us consider the steady and laminar flow of a
Newtonian fluid in a parallel-plate vertical channel.
The X-axis lies on the axial plane of the channel, with
a direction opposite to the gravitational field, while the
Y-axis is orthogonal to the walls. The channel occupies
the region of space —L < Y <L, the wall at Y=—L is
kept at a uniform temperature 7, while the wall at
Y=L is exposed to a uniform heat flux per unit area,
¢», which will be considered as positive if the energy is
supplied to the fluid. The dynamic viscosity u, the ther-
mal expansion coefficient f§, the thermal conductivity k
and the thermal diffusivity of the fluid will be assumed
to be constant. The Boussinesq approximation will be
adopted, together with the equation of state for the
mass density

p = poll — B(T — Tp)] 1)

where 7, is the reference fluid temperature and
po=p(Ty). Finally, it will be assumed that the only
nonzero component of the velocity field U is the X-
component U. Since V - U=0, U depends only on Y.
The momentum balance equation along Y yields
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P

5% 2
where P=p+ pogX is the difference between the press-
ure and the hydrostatic pressure. Thus, P depends only
on X. The momentum balance equation along X yields

dpP U

oy Hhgyr =0 3)

PogP(T — To) —
The derivative of Eq. (3) with respect to X yields

aT 1 d&’P
%= oF 77 @
0X  pogh dX

On account of Eq. (4), 07/0X is independent of Y.
Since 97/0X is zero for Y=—L, T depends only on Y.
Thus, Eq. (4) yields

dP
xr = constant. 5)

Let us assume that only the X-component of U is non-
zero, the thermal diffusivity is a constant, viscous dissi-
pation is negligible and 7 depends only on Y. Then,
the energy equation reduces to

d&’T

Eq. (6) implies that 7 is a linear function of Y. If T(L)
is denoted by 75, one has

Lq>

2L
e o= Tp=Tn—Ti =52 )

,—-T = T

where the mean fluid temperature 7., defined as

L

1

To=s; | W ®
L

coincides with the temperature on the plane Y=0. We
will call mean fluid density, p.,, the density of the fluid
at temperature Ty,. In analogy with Eq. (8), the mean
fluid velocity will be given by

L

1

Un =57 J U(Y)dy. )
-L

Let us define the following dimensionless quantities:

Y U (T - Tk 4LUnpy,
y=—, u=—, 0= , Re= ,
L Un Lq> u

25602 4
Gr = 250Pmgba

12k

_ AP (T Tk
uUy dX° ’= Lg, (10)
&= ﬁ(TO - Tm)-

The definition of ¢ and Eq. (1) imply

Po 1
_ , 11
P l+e (1

Moreover, Eq. (10) yields

Gr 64 L
Gr _ 64pngfarl” (12)
Re wkUp

Contrary to what happens in Refs. [1-3], the Reynolds
number Re and the Grashof number Gr do not depend
on the reference temperature 7, either explicitly or
through po. The dimensionless parameters y and ¢ have
been introduced to analyse the dependence of u and of
Aon Ty.

By means of Eq. (10), one can rewrite Eq. (3) in the
dimensionless form

d*u Gr
Sl A7 B 1
42 a0 1o kel 7 (13)

Egs. (9) and (10) yield the following condition on u:

1
J u(y)dy =2. (14)
5

From Egs. (6) and (10) one obtains

d*0

The boundary conditions on 6 are

0(—1) = —1, do =1. (16)
dy |,

Egs. (15) and (16) yield
0(y) =y. (17

By substituting Eq. (17) in Eq. (13) and integrating
twice, one obtains

r 3 Gr y2
__ )L
) = =320 1 R +(64(1+8)ReV >2 8
+Ay+B

where A and B are integration constants. The bound-
ary conditions on u,

u(—1)=u(1)=0 (19)
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yield

4— Gr
T 384(1 +e)Re’

po_M_ G
~ 2\t ore’ )

By substituting Eq. (20) in Eq. (18) and applying con-
dition (14), one obtains

(20)

Y Gr

T 1+e 64Re T @1
Egs. (18), (20) and (21) yield

N <O N PR
u(y) = 384(1+8)Rey(1 )+ 2(1 o). (22)

It is easily proved that Egs. (17), (21) and (22) agree
with the results obtained in Refs. [1-3]. By writing 7 as
y=¢k/(fLgq>) and employing Eq. (12), one can rewrite
Eq. (21) in the form

&

),:1+8A+3 (23)
where
2
A= ”mf;L (24)
1Un

which is preferable in order to study the dependence of
A on the choice of Ty.

In the special case of natural convection, it is con-
venient to define the modified dimensionless velocity

_ 384Re

y 6uk
TH(}) ———=U(Y). (25)

v(y) =
Pm&Paa L3

From Egs. (22) and (25) one obtains, for Re=0,

W) = 1 =), (26)
Egs. (22) and (26) show that the dimensionless vel-
ocities u and v depend on the choice of T, through the
parameter ¢. Reliable values of ¢ can be obtained from
Eq. (10). For liquids at room temperatures, the highest
values of f are those of hydrocarbons. For n-pentane
at 20°C, f=1.60 - 1073 K~! and, for |Ty—Twm|=30 K,
one has |¢/=0.048=0.05. Thus, for liquids in the
mixed-convection conditions considered in this paper,
one can assume |g/=0.05 as an upper bound for [e], if
To is chosen in the range T < Ty < T,. For ideal gases
at 20°C, f=3.41 - 107> K~! and, for |To—Twm|=30 K,
one obtains |¢|=0.10220.1. Thus, |¢=0.1 can be con-
sidered as a reliable upper bound for ||, for the con-
ditions analysed in this paper and for reasonable
choices of Ty,.

Gr/Re =2000

-1

Fig. 1. Boundary condition 7| <> ¢y: plots of u vs. y for Gr/
Re=2000. The solid line refers to ¢=0, the line with long
dashes to ¢=—0.1, the line with short dashes to ¢=0.1.

Plots of u vs. y for e=0, —0.1 and 0.1, are reported
in Fig. 1 for Gr/Re=2000, while plots of v vs. y for
natural convection are reported in Fig. 2, for ¢=0,
—0.1, and 0.1. In each figure, the solid line refers to
£=0, the line with long dashes refers to ¢=—0.1, the
line with short dashes refers to ¢=0.1. Figs. 1 and 2
show that the effect of the choice of T, on the dimen-
sionless velocity profiles determined analytically is
neither very strong nor negligible. The effect becomes
negligible only for low values of Gr/Re.

For mixed convection, the conditions for flow rever-
sal are

du <0 27
dy P

for Gr/Re>0, and

04+ PESSRN
Re =0 7/
/4 \\\
277 W\
0.2 7 \
v o0
4
0.2 \. /}/
N\ 7
A\ N _,,’/
N
04t ~__~
-1 -0.5 0 0.5 1
y

Fig. 2. Boundary condition T« ¢,: plots of v vs. y, for natu-
ral convection (Re=0). The solid line refers to ¢=0, the line
with long dashes to ¢=—0.1, the line with short dashes to
e=0.1
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Fig. 3. Boundary condition 7'} < ¢,: plots of 4 vs. &. The line
with long dashes refers to A= 103, the line with short dashes
to A=5 - 103, the solid line to A=10*

d
<o (28)
dy y=1

for Gr/Re < 0. Eq. (22) shows that the values of Gr/Re
which fulfil conditions (27) and (28) depend on ¢. For
=0, i.e. To= Ty, Eqs. (22) and (27) yield Gr/Re>= 576,
while Egs. (22) and (28) yield Gr/Re <—576.

Eq. (23) shows that 1 depends on the choice of T,
through the parameter ¢. We will first consider positive
values of A, which correspond to positive values of U,
(upward motion). Plots of 4 vs. &, for A=10% 5. 10°
and 10%, are reported in Fig. 3. The line with long
dashes refers to A=10° the line with short dashes
refers to A=5 - 10°, while the solid line refers to
A=10* Fig. 3, which represents only a narrow range
of values of ¢, points out that the effect of the choice
of Tp on A is very strong, and increases when A
increases. For water at 20°C, pn/u = 10° s m™ and
the condition A=10* is obtained, for instance, with
L=0.01 m and U,,=0.1 m s~". For ¢=0, i.e. To=Th,
A=3. It is easily verified that this value of 4 equals
that obtainable for laminar forced convection in a
channel. On the other hand, Eq. (23) and Fig. 3 show
that, for every choice of T, such that Ty # T, 7
becomes negative for sufficiently high values of |Al.
Note that |A| has no upper bound, because it tends to
infinity when |Um| — 0. Indeed, since 1+¢>0, if A is
positive (upward flow), negative values of 4 may occur
for ¢ <0, i.e. Ty < Ty. On the other hand, if A is nega-
tive (downward flow), negative values of A may occur
for >0, i.e. Top> Ty,. The condition 4 < 0 implies that
dP/dX has the same sign as Uy, i.e. P increases along
the motion. This unpleasant result suggests that dP/dX
can be endowed with an acceptable physical meaning
only if the choice T = T}, is made.

Let us now consider the quantity dp/dX, which is re-
lated to dP/dX by the equation

dp dP

axr —ax s (29

and the dimensionless coefficient

- L* dp

A= __HUm ix (30)

From Egs. (29), (30), (10) and (24) one obtains

~ A

A=2 . 31
+ 1+e¢ GD

Egs. (31) and (23) yield

i =A+3. (32)

Eq. (32) shows that 7 is independent of the choice of
Ty. Moreover, it shows that, for fixed values of u, pp,
and L, 4 depends only on U,,, with the same law as in
the case of forced convection. Thus, for a given chan-
nel and for the boundary condition considered in this
section, the buoyancy forces have no effect on Uy, if
dp/dX, u and p,, are fixed. This result can be easily
argued from Eqs. (21) and (23) only if the choice
To= Ty, is performed, so that Egs. (21) and (23) reduce
to A=3. Therefore, the choice To,=T,, appears as
recommendable to simplify the analysis of the relation
between the mean velocity and the pressure field.

A more general argument in favour of the choice
To= Ty, is the following. As it has been shown, differ-
ent choices of Ty yield different dimensionless velocity
distributions. It is reasonable to argue that the most
accurate solution is obtained when Eq. (1) yields the
most accurate values of p(7) in the domain —L <Y <
L. Eq. (1) can be considered as the first-order trunca-
tion of the Taylor series expansion

_ — 1 (d"p n
AT =p(To)+ 3o ( o7 )T:T0<T— Ty)" (33)

The best accuracy of the first-order truncation of Eq.
(33) is obtained by choosing the value of 7, which
minimizes the integral of the squared difference
(T—T,)* in the domain —L < Y<L, i.e. the function

L
F(Ty) = Jat-nfdx (34)

—L

The minimum of F(7,) occurs when its derivative is
zero, i.e., when T fulfils the condition

L
ﬁr—nmyzo (35)
—L
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On account of Eq. (8), Eq. (35) is fulfilled if and only
lf TO = Tm~

3. Mixed convection problem with the boundary
condition 7y T,

Let us consider the boundary condition 7 < T>.
Egs (1)—(9) still hold. On account of Eq. (7), one can
replace Lq,/k with T,—T,, in the definitions of 6, Gr,
and v, so that these dimensionless parameters can be
rewritten as

T— Ty 256pp8B(Tr — Tw)L?
0=——, Gr= s
T2 - Tm luz
(36)
Ty~ T
T T,
Thus, Eq. (12) can be written in the form
4 T — T,
Gr _ 64pungh(T> = Tm) (37)

Re WU

Eq. (13) still holds, with the expressions of 0, y and
Gr/Re given above. Eqs. (14) and (15) remain
unchanged. On account of Eq. (7), the boundary con-
ditions on 0 are O(—1)=—1 and 0(1)=1, and yield
again Eq. (17). Since the boundary conditions on u are
unchanged, one still obtains Egs. (21)—(32).

4. Solution of the mixed convection problem for the
boundary condition ¢; < ¢,

Let us consider again the steady and fully developed
laminar flow of a Newtonian fluid with constant values
of u, B, k and ¢, in the parallel-plate vertical channel
described in Section 2. Let us assume that the wall at
Y=—L is exposed to a uniform heat flux per unit area
q1, while the wall at Y=L is exposed to a uniform
heat flux per unit area ¢,. Each heat flux will be con-
sidered as positive if the energy is supplied to the fluid.
Except in the particular case ¢g; +¢,=0, which reduces
to the boundary conditions studied in Sections 2 and
3, the fluid temperature depends on both X and Y. As
in Sections 2 and 3, it will be assumed that only the X-
component U of the velocity field U is nonzero. Thus,
V - U=0 implies that U depends only on Y. Moreover,
in agreement with Refs. [2,3,7], it will be assumed that
FT/oX>=0.

Two different kinds of choice of the reference fluid
temperature have been employed in the literature in
this case. In Refs. [2] and [3], a constant (and unspeci-
fied) reference temperature 7, has been employed.
However, this kind of choice does not appear as suit-
able for the study of the fully developed region. For

instance, let us assume that ¢, ¢> and U, are positive.
In this case, the definitions of the dimensionless quan-
tities employed in Ref. [3], together with Eq. (7) of the
same reference, imply that dp/dX is a linearly increas-
ing function of X. Thus, there exists a value X, of X
such that, for X> X, p increases along the fluid-flow
direction. On the other hand, since the flow is upward,
the pressure is expected to be a decreasing function of
X. In the study of the fully developed laminar convec-
tion for heated vertical pipes, Morton [7] chooses a
reference fluid temperature which varies along X,
namely the local wall temperature. We will choose as
the reference fluid temperature, for each cross section,
the mean fluid temperature in the section, i.e.

L
ﬂdX):ﬁ%l[ﬂXﬂﬂdY (38)
L

As a consequence, Eq. (1) will be rewritten as
p=pull = (T = Ty) (39

where pn=p(Ty). The momentum balance equation
along Y yields oP/0Y=0, so that P=P(X). The
momentum balance equation along X yields

dpP U
pmgﬁ(T—-Tg)—-a— =0. (40)

x Thayz
Clearly, since Ty, depends on X, p,, depends on X as
well. However, in analogy with Ref. [7], we will assume
that the derivative dp,,/dX is negligible. With this
assumption, the derivative of Eq. (40) with respect to
X yields

AT dTm 1 dp
X dX  p,gp dX?

(41)

Since T, and P depend only on X, Eq. (41) implies
that 97/0X is independent of Y. Thus, one obtains

AT  dT,
ax ~ dax “2)
Egs. (41) and (42) yield d*P/dX>=0, i.c.
dpP
o= constant. (43)
The energy balance equation can be written as
aT k 92T

U= (44)

X pne, Y2

Since Eq. (44) is non-linear, the method to determine
the reference temperature proposed in Ref. [6] is ruled
out. Egs. (42) and (44) yield
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meP%U = k%. (45)
An integration of Eq. (45) from —L to L gives
2mechmddi/{/" = kg—z; Y:L— g—i o (46)
The thermal boundary conditions are

—kg—i Yﬁ_L— q1, kg_)Y; Y:L: Q- 47)
Eqgs. (46) and (47) yield

dTw _ @144 (48)
dX  2Lp,cpUn

From Egs. (45) and (48) one obtains

FT _qi+q U (49)

Y2 2Lk Uy’

Let us introduce the dimensionless quantities y, u, 0,
Re, Gr and /A defined in Eq. (10), and the dimensionless
parameter

r=1 (50)
q2

Obviously, Gr/Re is still given by Eq. (12). Moreover,
an account of Eq. (42), 6 depends only on y. Eq. (40)
can be rewritten as

d’u Gr
— == 0— A 51
dy? 64 Re D

while Eq. (49) yields

d*0 1+R
= Uu.

— == 2
a2 > (52)
The boundary conditions on u are given by Eq. (19).
From Eq. (47) one obtains

do
dy

do
— =1. (53)
dy y=1

y=—1

Moreover, Eq. (14) holds, together with the condition

|
[ 0(y)dy =0. (54)

Egs. (51) and (52) yield

d*u Gr
dT/“ = —m(l + R)u. (55)

From Eqgs. (51) and (53) one obtains

3 . 3 .
ﬂ :RG)’ M :_Gi . (56)
dy? i 64Re’ dy3 . 64Re
Eq. (51) can be rewritten as
64Re [ d*u
=— — + ).
0 Gr ( a2 + ) (57)

Eqgs. (54) and (57) yield

1 {du

Let us now solve Eq. (55), together with the boundary
conditions (19) and (56) and with the constraint given
by Eq. (14). If (Gr/Re)(1+ R) #0, the general solution
of Eq. (55) can be determined by solving the character-
istic equation

du
dy

y=—1

nt =0t (59)
where
1/4
1 1+ R Gr

Since the solutions of Eq. (59) are w, —w, iw and —iw,
the general solution of Eq. (55) can be written in the
form

u(y) = a, sinh (wy)+ a; cosh (wy)+ a3 sin

(61)
(wy) +ag cos (wy).

The coefficients a;, a», a3 and a4 are determined by the
boundary conditions (19) and (56). By substituting the
expressions of these coefficients in Eq. (61), one
obtains
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(1 = R)w[sin w sinh (wy)— sinh ® sin (wy)]

u(y) =

(1+ R)(sin w cosh w + cos w sinh )

wlcosh o cos (wy)— cos w cosh (wy)]
(sin w cosh w — cos w sinh w)

(62)

Clearly, the first term on the right-hand-side of Eq.
(62) vanishes for R=1.
Eqgs. (58) and (62) yield

w?(sin w cosh w + cos w sinh w)
A= - - . (63)
sin @ cosh w — cos w sinh w

Then, from Egs. (57), (60), (62) and (63) one obtains

By integrating Eq. (66), with the boundary conditions
(19) and (56) and the constraint (14), one obtains the
Hagen—Poiseuille velocity profile

w(y) =31 =57 (67)

Eqgs. (58) and (67) yield
A=3. (68)

The substitution of Eq. (67) in Eq. (52) gives

d’0 3
FEhe Z(l + R)(1 — ). (69)

0=~

sin @ cosh @ 4+ cos w sinh @ — w[cos @ cosh (wy)+ cosh @ cos (wy)]

1+ R[(1—-Rwlsin  sinh (wy)+ sinh @ sin (wy)]
(1+ R)(sin w cosh w — cos w sinh w)

sin @ cosh @w — cos w sinh w

}. (64)

Egs. (62), (63) and (64) hold for w#0 and R#—1. The
special cases =0 and R=—1 will be considered later.
The velocity profiles implied by Eq. (62) agree with
those obtained by Cheng et al. [3], provided that the
Grashof number is evaluated at the local mean fluid
temperature 7,,(X). Both for R=1 and for R#1, u(y)
and 6(y) become singular for a sequence of values of
. For R# 1, singularities occur for the real values of
o which are roots of the equation

(sin @ cosh )* —(cos w sinh w)* = 0. (65)

The first five real roots of Eq. (65) are w(=2.36502037,
®123.92660231,  0,=5.49780391,  w;=7.06858274,
4=8.63937982. Only the second and the fourth of the
values of w reported above correspond to singularities
of u(y) and O(y) for R=1. However, since the con-
dition R=1 cannot be obtained experimentally with an
infinite accuracy, all the values of w reported above
correspond to singularities of u(y) and 0(y) in practi-
cal cases. On account of Eq. (60), all singularities
occur for (1+ R)Gr/Re < 0. Thus, if ¢, + ¢, is positive
all singularities occur for downward flow, while if
¢q1+q> is negative all singularities occur for upward
flow. In particular, @, corresponds to (1+R)Gr/
Re=—128w§=—4004.51. In analogy with Morton [7],
we will suppose that fluid flows with (1+ R)Gr/Re <
—128w§ cannot be obtained experimentally.

In the special cases Gr/Re=0 and R=—1, Egs. (62)—
(64) do not hold. If Gr/Re=0, i.e., if purely forced
convection occurs, Eq. (55) reduces to

d*u

— =0. 66
o (66)

The integration of Eq. (69), with the boundary con-
ditions (53) and the constraint (54) yields

4

3 o 21-R 9
0_1(1+R)< TR

+2—= —f>. (70)

12 31+R 60

If R=—1, Eq. (55) reduces again to Eq. (66). By inte-
grating Eq. (66), with the boundary conditions (19)
and (56) and the constraint (14), one obtains the vel-
ocity profile

U = sy (1= 1)+ 21— ), an
Note that, in the case ¢=0, Eq. (22) reduces to Eq.
(71).

Egs. (58) and (71) yield Eq. (68), while Eq. (52)
reduces to Eq. (15). The integration of Eq. (15), with
the boundary conditions (53) and the constraint (54),
yields Eq. (17). Indeed, for R=—1 the boundary con-
dition ¢, < ¢, coincides with the boundary conditions
T1<—>q2 and T|<—>T2.

Let us now discuss the implications of Egs. (62)—
(64). The unlikely previsions of Egs. (62) and (64) for
w=w, and R=1 are illustrated in Fig. 4, which rep-
resents plots of u and 6 vs. y for (1+R)Gr/
Re=-4004.51121392346 and R=0.998, 0.999, 1.001,
1.002. The figure shows that, although the boundary
conditions are very close to symmetry, the plots of u
and 6 seem perfectly antisymmetric. Positive values of
u and negative values of 0 are predicted for y < 0 if R
< 1, and for y>0 if R>1. The absolute values of u
and 6 exceed, respectively, 6 - 10'2 and 2 - 10" for
both R=0.998 and 1.002; they exceed, respectively,
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12
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12
-1.10

12
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Fig. 4. Boundary condition ¢, <> ¢: plots of u and 0 vs. y for
(1+ R)Gr/Re=—4004.51121392346 and values of R close to
R=1. The thick solid lines refer to R=0.998, the lines with
long dashes to R=0.999, the lines with short dashes to
R=1.001, the thin solid lines to R=1.002.

3-10"” and 1 - 10" for both R=0.999 and 1.001.
Obviously, the predictions plotted in Fig. 4 cannot cor-
respond to physical reality. Indeed, this figure illus-
trates, by examples, the following circumstance. For
every value of R such that Egs. (62)—(64) hold, except

2 Gr/Re =1000
1.5
u 1
0.5
0
-1 0.5 0 0.5 1
y

Fig. 5. Boundary condition ¢; <> ¢»: plots of u vs. y for Gr/
Re=1000 and some values of R. The thick solid line (a) refers
to R=1, the thin solid line to R=0.5, the line with long
dashes to R=0, the line with short dashes to R=-0.5, the
thick solid line (b) to R=—1.

if R is exactly equal to 1, the predictions of these
equations are quite unlikely for Gr/Re=—128w§/
(1+R). This circumstance suggests that the laminar
fluid flows considered in this section can be attained
experimentally only if |Gr/Re| < 128w ¢/(1+ R). In par-
ticular, for R=1 this condition implies |Gr/Re| <
2002.26.

In recent theoretical works on the stability of mixed-
convection flow in vertical channels, Chen and Chung
[8.,9] find more restrictive stability conditions. For sym-
metrically heated channels [8], they conclude that, for
Pr=7 and |Re|>40, buoyancy assisted flow (i.e., for
instance, upward flow with ¢,=¢; >0) can become un-
stable if Gr/Re> 1054 and buoyancy opposed flow can
become unstable if Gr/Re < —390. On the other hand,
for asymmetrically heated channels (R=—1), the flow
stability is strongly dependent on Re and Pr [9].
Clearly, no upper limit on |Gr/Re| can be established in
this case if Re is not fixed, because, if R=—1, no net
heat flux is supplied to the fluid and natural convection
(Re=0) can occur. The available experimental studies
on the stability of mixed-convection flow do not refer
to vertical channels, but to vertical pipes [10]. The
authors [10] conclude that, for uniformly heated pipes,
buoyancy assisted flow becomes unstable when the vel-
ocity profiles develop points of inflection. For a sym-
metrically heated vertical channel, the velocity profiles
develop points of inflection for Gr/Re = 1558.55. To
the authors’ knowledge, neither theoretical nor exper-
imental works provide stability criteria for the mixed-
convection flow in a vertical channel with |R|#1.

In the following, we will consider ¢,>0 and —1 <R
< 1. We will assume the conditions Gr/Re < 1000 for
upward flow and Gr/Re>—350 for downward flow.

Fig. 5 illustrates the dependence of the dimension-
less-velocity profiles on the value of R, for upward

1.5} Gr/Re=-350

1.25

0.75
0.5

0.25

Fig. 6. Boundary condition ¢; <> ¢»: plots of u vs. y for Gr/
Re=-350 and some values of R. The thick solid line (a)
refers to R=1, the thin solid line to R=0.5, the line with long
dashes to R=0, the line with short dashes to R=-0.5, the
thick solid line (b) to R=—1.
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Fig. 7. Boundary condition ¢; <> ¢,: plots of 6 vs. y for Gr/
Re=0 and some values of R. The thick solid line (a) refers to
R=1, the thin solid line to R=0.5, the line with long dashes
to R=0, the line with short dashes to R=-—0.5, the thick
solid line (b) to R=—1.

flow. The figure shows that, for Gr/Re= 1000, the plots
of u vs. y undergo sharp changes while R varies in the
range —1 < R< 1. The thick solid line denoted by (a),
which represents the condition R=1, displays a vel-
ocity profile similar to that of forced convection, but
with #(0)=1.335. No inflection of the velocity profile is
present. On the other hand, the thick solid line
denoted by (b), which represents the condition R=—1,
shows an appreciable flow reversal close to the cooled
wall. The plots for R=0.5 (thin solid line), R=0 (line
with long dashes), and R=-0.5 (line with short
dashes) lie between the lines denoted by (a) and (b);
clearly, the plot for R=0.5 is closer to line (a), while
that for R=—0.5 is closer to line (b). A hardly appreci-
able flow reversal occurs for R=—0.5. The dependence
of u(y) on R for downward flow is illustrated in Fig.
6, which refers to Gr/Re=—350 with the same values
of R as Fig. 5. The influence of R on the velocity pro-
files is still appreciable, even if the absolute value of
Gr/Re is rather small. Clearly, for R # 1, the highest
values of u occur for y < 0, i.e. in the neighbourhood
of the cooled wall.

The plots of the dimensionless temperature profiles
corresponding to the plots of u(y) represented in Figs.
5 and 6 have not been reported, because the depen-
dence of O(y) on Gr/Re is hardly appreciable in
graphic form. Plots of 0(y) for Gr/Re=0 (forced con-
vection) and some values of R are reported in Fig. 7.
As expected, the plots for R=0.5 (thin solid line),
R=0 (line with long dashes), and R=-0.5 (line with
short dashes) lie between the solid lines denoted by (a)
and (b), which refer to R=1 and to R=—1, respect-
ively.

Plots of 1 vs. Gr/Re, in the range —350 < Gr/Re <
1000, are reported in Fig. 8 for R=1 [line (a)], R=0.5,
0, —0.5 and —1 [line (b)]. The figure shows that, while

for R=—1 the parameter A is constant, for R>—1 it is
an increasing function of Gr/Re. Thus, if R>—1 and
the value of uUpn/L? is fixed, the absolute value of dP/
dX is higher for buoyancy-assisted flow than for buoy-
ancy-opposed flow. This effect is due merely to the
change of shape of the velocity profile. In fact, the
choice of T,(X) as the reference fluid temperature
implies that the average value of the buoyancy force in
each channel section is zero. As a consequence, strictly
speaking, the buoyancy neither assists nor opposes the
net fluid flow. In this paper, the terms buoyancy-
assisted flow and buoyancy-opposed flow are used only
to denote the cases Gr/Re>0 and Gr/Re < 0.

The Nusselt numbers at the channel walls will be
defined as

_ 4Lq1
KT - Ty

4Lq2

N = —
“ (T, — Ty)

Nuz (72)

where Nu; refers to the wall at Y=—L, Nu, refers to
the wall at Y=L, and

L
J UTdy (73)

1

To = 2LU,

is the bulk temperature of the fluid in the cross section
considered. By employing Egs. (10) and (50), Eq. (72)
can be rewritten as

4R

Nup = 2
uj 9]—9]3,

Nuz

~0,— 0, 74)

where the dimensionless bulk temperature 0, is given
by

4.25

(a)

275t~

25

-200 0 200 400 600 800 1000

Fig. 8. Boundary condition ¢g; <> ¢;: plots of 41 vs. Gr/Re for
some values of R. The thick solid line (a) refers to R=1, the
thin solid line to R=0.5, the line with long dashes to R=0,
the line with short dashes to R=—0.5, the thick solid line (b)
to R=—1.
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Values of the Nusselt numbers at the channel walls, for the boundary condition ¢, < ¢

R=1 R=0.5 R=0 R=-0.5 R=-1

Gr/Re Nu,y Nu, Nu, Nu, Nu, Nu, Nu, Nu, Nu, Nu,
1000 8.8200 8.8200 15.187 7.4526 0.0000 6.5674 2.7494 6.0910 2.9691 6.1277
800 8.7053 8.7053 15.492 7.2888 0.0000 6.3521 2.8080 5.7723 3.1304 5.5385
600 8.5894 8.5894 15.861 7.1148 0.0000 6.1266 2.8775 5.4627 3.3103 5.0526
400 8.4725 8.4725 16.306 6.9286 0.0000 5.8905 2.9605 5.1625 3.5122 4.6452
300 8.4136 8.4136 16.562 6.8305 0.0000 5.7683 3.0081 5.0158 3.6226 4.4651
200 8.3545 8.3545 16.845 6.7284 0.0000 5.6433 3.0604 4.8716 3.7403 4.2985
100 8.2950 8.2950 17.157 6.6223 0.0000 5.5154 3.1181 4.7297 3.8658 4.1439
0 8.2353 8.2353 17.500 6.5116 0.0000 5.3846 3.1818 4.5902 4.0000 4.0000
—100 8.1753 8.1753 17.879 6.3960 0.0000 5.2509 3.2525 4.4530 4.1439 3.8658
—200 8.1150 8.1150 18.296 6.2750 0.0000 5.1142 3.3311 4.3183 4.2985 3.7403
—300 8.0545 8.0545 18.755 6.1481 0.0000 4.9746 3.4189 4.1859 4.4651 3.6226

1 1 flow direction. A more general argument in favour of
Op = P J uf dy. (75) the choice of the mean fluid temperature in a cross sec-

-1

The Nusselt numbers defined above can be employed
to evaluate T\—Ty, T,—Ty, and T|—T>, if ¢; and ¢, are
given. In particular, 0;—0,=4(R/Nu;—1/Nu). Values
of Nu; and of Nu, in the range —300 < Gr/Re < 1000
are reported in Table 1, for R=1, 0.5, 0, —0.5 and —1.
For positive values of R and of Gr/Re, it is possible to
verify that the values of Nu; and of Nu, reported in
Table 1 agree with those evaluated by Cheng et al. [3].
To perform this check, one must consider that the
ratio between the Grashof number and the Reynolds
number defined in this paper is eight times that defined
in Ref. [3], while the Nusselt numbers defined in this
paper are twice those defined in Ref. [3].

The results reported in Table 1 show that Nu; is an
increasing function of Gr/Re for R=1, vanishes for
R=0, and is a decreasing function of Gr/Re for the
other values of R. On the other hand, Nu, is an
increasing function of Gr/Re for each value of R and,
obviously, equals Nu; for R=1.

5. Conclusions

The fully-developed mixed-convection in a plane ver-
tical channel has been studied analytically. For the
boundary conditions of either uniform wall tempera-
tures or a uniform wall temperature and a uniform
wall heat flux, it has been shown that the choice of the
reference fluid temperature has a non-negligible effect
on the dimensionless velocity profiles and a very sharp
effect on the gradient of the difference P between the
pressure and the hydrostatic pressure. In particular,
only if the mean fluid temperature 7, is chosen as the
reference temperature, P always decreases along the

tion T, as the reference fluid temperature for any
fully-developed mixed-convection problem in channels
has been proposed. For the boundary condition of uni-
form wall heat fluxes ¢; and ¢», it has been proved
that any choice of a fixed reference temperature yields
an unlikely pressure field. Therefore, the mean fluid
temperature in each cross section, 7.,(X), has been
chosen as a local reference temperature. With this
choice, an analytical solution of the fully-developed
mixed-convection in a vertical channel with the bound-
ary condition of uniform wall heat fluxes has been pre-
sented. The solution holds also for negative values of
q1/q>. In particular, for ¢;/q»=—1 it coincides with the
solution obtained for the boundary conditions of uni-
form wall temperatures and of a uniform wall tempera-
ture and a uniform wall heat flux.
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